COMBINATORICA

Akadémiai Kiadó – Springer-Verlag

ON THE NUMBER OF NOWHERE ZERO POINTS IN LINEAR MAPPINGS

R. D. BAKER, J. BONIN, F. LAZEBNIK, and E. SHUSTIN

Received January 2, 1991 Revised May 6, 1993

Let A be a nonsingular n by n matrix over the finite field GF_q , $k = \lfloor \frac{n}{2} \rfloor$, $q = p^a, a \ge 1$, where p is prime. Let P(A,q) denote the number of vectors x in $(GF_q)^n$ such that both x and Ax have no zero component. We prove that for $n \ge 2$, and $q > 2 {2n \choose 3}$, $P(A,q) \ge [(q-1)(q-3)]^k (q-2)^{n-2k}$ and describe all matrices A for which the equality holds. We also prove that the result conjectured in [1], namely that $P(A,q) \ge 1$, is true for all $q \ge n + 2 \ge 3$ or $q \ge n + 1 \ge 4$.

1. Introduction

Let GF_q be the finite field containing $q=p^a$ elements, where p is prime, $a \ge 1$, and let $GL_n(q)$ denote the set of all nonsingular n by n matrices whose entries are elements of GF_q . Let $(GF_q)^n$ denote the n-dimensional vector space over GF_q in which elements are the ordered n-tuples of elements of GF_q , and let $GF_q^* = GF_q \setminus \{0\}$. Given $A \in GL_n(q)$, we call $x \in (GF_q)^n$ a good vector of A if both x and Ax have no zero components. Let P(A,q) denote the number of good vectors of A. In [1] the following conjecture was stated for all prime powers and proved for all proper prime powers $q=p^a, a \ge 2$:

Conjecture. Let $A \in GL_n(q)$, where $q \ge 4$. Then $P(A,q) \ge 1$.

First we show that the conjecture is correct for all $q \ge n+2 \ge 3$ and for all $q \ge n+1 \ge 4$, including q being prime (Theorem 1). Next we ask the following question: What is the $\min\{P(A,q)|A \in GL_n(q)\}$? We show that for $n=2k \ge 2$ and $q>2\binom{2n}{3}$, this number is $[(q-1)(q-3)]^k$, while for $n=2k+1 \ge 3$ and $q>2\binom{2n}{3}$, this number is $[(q-1)(q-3)]^k(q-2)$. We also describe all matrices $A \in GL_n(q)$ having the minimal number of good vectors.

2.

Theorem 1. Let $A \in GL_n(q)$, where $q \ge n+2 \ge 3$ or $q \ge n+1 \ge 4$. Then $P(A,q) \ge 1$.

Proof. We use a probabilistic argument. Let x be a randomly chosen vector obtained by picking each of its coordinates randomly and independently from GF_q^* according to the uniform distribution. For every fixed row of A, the probability that x is orthogonal to the row is at most $\frac{(q-1)^{n-1}}{(q-1)^n} = \frac{1}{q-1}$ since the row contains a nonzero element. Hence the expected number of zero coordinates in Ax is at most $\frac{n}{q-1} < 1$ for $q \ge n+2$. Thus the statement is proven in this case. If q=n+1, then this expected value is at most 1. If it is less than 1, the theorem is proven. If it is equal to 1, then the probability of x being orthogonal to every row of A is $\frac{1}{q-1}$, and this happens if and only if each row of A contains precisely two nonzero entries. For $n \ge 3$, the latter implies the existence of $x \in (GF_q^*)^n$ such that Ax has at least two zero components. Since the expected number of zero components of Ax is 1, there must be another vector $y \in (GF_q^*)^n$ such that Ay has no zero coordinates. Thus the theorem is proven for all $q \ge n+1 \ge 4$.

3.

Let $A=(a_{ij})$ and let a_i denote the i-th row of $A,i=1,\ldots,n$. By e_i we denote the i-th vector in the standard basis of $(GF_q)^n$, i.e. the vector whose i-th component is 1 and the other components are zeros. Let $B=\{b_1,\ldots,b_n,b_{n+1},\ldots,b_{2n}\}$, where $b_i=e_i$ and $b_{n+i}=a_i,i=1,2,\ldots,n$. The set B contains no zero vector since A is nonsingular. Let $B_i=\langle b_i\rangle^{\perp},i=1,\ldots,2n$, be the orthogonal complement of $\langle b_i\rangle$ in $(GF_q)^n$. Then $P(A,q)=\left|\bigcup_{i=1}^{2n}B_i\right|=\left|\bigcap_{i=1}^{2n}\overline{B_i}\right|$. By the inclusion–exclusion formula, we have

$$P(A,q) = \sum_{S \subseteq B} (-1)^{|S|} \left| \bigcap_{i \in S} B_i \right| = \sum_{S \subseteq B} (-1)^{|S|} q^{n-r(S)} , \qquad (1)$$

where r(S) is the rank of S. We will use some notions and results about geometric lattices (see [3] for the relevant definitions). In the geometric lattice L we consider, B is the set of atoms and, in general, the elements are of the form $B \cap X$ as X ranges over all subspaces of $(GF_q)^n$, \wedge is intersection, and \vee is calculated from the sum of subspaces. We call a minimal dependent subset of B a circuit. If the subset $\{b_{i_1}, b_{i_2}, \ldots, b_{i_k}\}$ is a circuit with $i_1 < i_2 < \ldots < i_k$, then the subset $\{b_{i_2}, b_{i_3}, \ldots, b_{i_k}\}$ is called a broken circuit. The polynomial P(A,q) is a well known polynomial in q called the characteristic polynomial of L. (See e.g. [3].) The properties of P(A,q) are described in the following theorem, the proof of which can be found in [3].

Theorem 2. Let L be a geometric lattice of rank m. The characteristic polynomial is

$$f(L,\lambda) = \lambda^m + f_1 \lambda^{m-1} + f_2 \lambda^{m-2} + \ldots + f_m ,$$

where $(-1)^i f_i$ is a positive integer for $1 \le i \le m$, equal to the number of independent subsets of i atoms not containing any broken circuit.

Using Theorem 2, we can rewrite (1) as

$$P(A,q) = q^{n} - c_1 q^{n-1} + c_2 q^{n-2} - \dots + (-1)^{n} c_n , \qquad (2)$$

where c_k , for k = 1, ..., n, is the number of independent subsets of k vectors of B containing no broken circuits. This description of the c_i 's implies that

$$1 \le c_i \le \binom{2n}{i}$$
, for $i = 1, \dots, n$. (3)

By Theorem 1, we know that for $q \ge n+2 \ge 3$ and for $q \ge n+1 \ge 4$, there is at least one good vector for any $A \in GL_n(q)$. The next theorem shows which matrices have the least number of good vectors when q is sufficiently large.

Theorem 3. Part 1: Let $n=2k\geq 2, q=p^a, p$ prime, $a\geq 1$, and $A\in GL_n(q)$. Then if n=2 and $q\geq 3$, or $n\geq 4$ and $q>2\binom{2n}{3}$,

- (i) $P(A,q) \ge [(q-1)(q-3)]^k$;
- (ii) $P(A,q) = [(q-1)(q-3)]^k$ if and only if A is a block diagonal matrix

$$A = \begin{pmatrix} A_1 & & & \\ & A_2 & 0 & \\ & 0 & \ddots & \\ & & & A_k \end{pmatrix} ,$$

where A_i is a 2 by 2 nonsingular matrix over GF_q^* , or A is a matrix which can be brought to this form by some permutations of its rows and columns.

Part 2: Let $n=2k+1\geq 3$ and $A\in GL_n(q)$ with q as above. If n=3 and $q\geq 3$, or if $n\geq 5$ and $q>2\binom{2n}{3}$, then

- (i) $P(A,q) \ge [(q-1)(q-3)]^k (q-2);$
- (ii) $P(A,q) = [(q-1)(q-3)]^k(q-2)$ if and only if, upon permuting rows and columns, we obtain a block diagonal matrix

$$\begin{pmatrix} A_1 & & & \\ & A_2 & 0 & \\ & 0 & \ddots & \\ & & & A_k \end{pmatrix},$$

where each A_i with $1 \le i \le k-1$ is a 2 by 2 nonsingular matrix over GF_q^* while A_k is a 3 by 3 nonsingular matrix of one of the following two forms, where zeros occur only where they have been specified:

$$\begin{pmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & 0 \\ 0 & a_{32} & a_{33} \end{pmatrix}, \quad \begin{pmatrix} \alpha a_{31} & \alpha a_{32} & 0 \\ \beta a_{31} & 0 & \beta a_{33} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad \begin{pmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & 0 \\ \alpha a_{21} & \alpha a_{22} & a_{33} \end{pmatrix}. \quad (4)$$

Proof. We first treat the cases n=2 and n=3. These play an important role in the general case.

Lemma 1. Let $A \in GL_2(q)$, with $q \ge 3$. Then $P(A,q) \ge (q-1)(q-3)$, with equality if and only if no entry of A is zero.

Proof. When n=2, there are three possible geometric lattices generated by the vectors e_1, e_2, a_1, a_2 , namely a two-point line, a three-point line, and a four-point line. The respective characteristic polynomials are $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$, $\lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$ and $\lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3)$. Of these, the last is least when evaluated at q. Since the four-point line arises precisely when no entry of A is zero, this proves the lemma.

Lemma 2. Let $A \in GL_3(q)$, with $q \ge 3$. Then $P(A,q) \ge (q-1)(q-2)(q-3)$, and equality holds if and only if the rows and columns of A can be permuted to produce a matrix of one of the forms given in (4).

Proof. P(A,q) is the characteristic polynomial of the rank-3 geometric lattice generated by the six vectors e_1,e_2,e_3,a_1,a_2,a_3 . It is straightforward to check that if we evaluate at q the characteristic polynomials of rank-3 geometric lattices with 6 points and no 5-point line, the minimum obtained is $q^3 - 6q^2 + 11q - 6 = (q-1)(q-2)(q-3)$. Furthermore, only two geometries have this characteristic polynomial, namely the geometry formed by deleting a point from the Fano plane, and the geometry consisting of a three-point line intersecting a four-point line. These geometries arise precisely from the matrices described in the statement.

Turning to the general case, we want to describe all nonsingular matrices $A \in GL_n(q)$ for which P(A,q) takes the smallest values provided that q is sufficiently large. Since the leading term in P(A,q) is q^n , the same for all $A \in GL_n(q)$, then an extremal matrix A should maximize c_1 . According to Theorem 2, c_1 is the number of independent 1-subsets of B containing no broken circuits. Since B contains no zero vector, every vector of B forms an independent 1-subset. Therefore the greatest value of c_1 is $\binom{2n}{1}$ and the corresponding matrix A has no row which is a scalar multiple of a vector $e_i, i=1,\ldots,n$. We denote the class of such matrices A by \mathcal{F}_1 and the next question we ask is: for which $A \in \mathcal{F}_1$ is the second coefficient c_2 of P(A,q) the smallest? Call this set of matrices \mathcal{F}_2 ; thus $\mathcal{F}_2 \subseteq \mathcal{F}_1$. According to Theorem 2, c_2 is the number of independent 2-subsets of B which contain no broken circuits. Since $A \in \mathcal{F}_1$, any two vectors of B are independent and a 2-subset of B contains a broken circuit if and only if it is a broken circuit. Therefore

$$c_2 = {2n \choose 2} - |\{S \subseteq B : S \text{ is a 2-element broken circuit}\}|$$
.

Clearly, c_2 is smallest if and only if the number of 2-element broken circuits of B is greatest, and our next step is to identify such sets B. The non-trivial lines (i.e. those containing more than two points) of the geometric lattice generated by B are of three types: $\{e_i, e_j, a_r\}$, $\{e_i, a_r, a_s\}$, and $\{e_i, e_j, a_r, a_s\}$ where i < j and r < s. Lines of the first type give rise to a single 2-element broken circuit, namely $\{e_j, a_r\}$; those of the second type contribute the 2-element broken circuit $\{a_r, a_s\}$; however those of the third type give rise to three 2-element broken circuits, namely $\{e_j, a_r\}$, $\{e_j, a_s\}$ and $\{a_r, a_s\}$. This motivates the claim: The maximum number of 2-element broken circuits is |3n/2|. The following ideas and terminology will clarify the proof

of this claim. Consider the set of all 3-element circuits; thus these have the forms $\{e_i, e_j, a_r\}$ and $\{e_i, a_r, a_s\}$ where i < j and r < s. Counting 2-element broken circuits amounts to counting the sets $\{e_i, a_r\}$ and $\{a_r, a_s\}$ we obtain from the 3-element circuits. Call a vector a_r a weight-2 vector if $\{e_i, e_j, a_r\}$ is a circuit for some e_i and e_i . (The terminology comes from coding theory.) Call a set $\{a_r, a_s\}$ arising from a circuit $\{e_i, a_r, a_s\}$ the trace of the circuit. Note that each trace should be counted once as a 2-element broken circuit (even though it may arise from either one or two 3-circuits) while each weight-2 vector a_r occurs in precisely one 3-circuit of the form $\{e_i, e_j, a_r\}$, and hence in precisely one 2-element broken circuit of the form $\{e_j, a_r\}$. Thus we want to count the traces and weight-2 vectors. Two further terms will be convenient. Generalizing the idea of weight-2 above, the weight of a vector a_i is the number of nonzero components of a_i . The support of a_i is the collection of distinct elements among e_1, \ldots, e_n which occur with nonzero coefficients when a_i is expressed as a linear combination of e_1, \ldots, e_n . Thus the weight of a_i is the cardinality of its support. Consider a simple graph whose vertex set is the set of all 3-circuits in B with an edge joining two 3-circuits if and only if the 3-circuits have a vector a_r in common. The bound |3n/2| on 2-element broken circuits, claimed above, follows from the examination of the connected components of this graph given in Lemmas 3 through 5 below. Each trace $\{a_r, a_s\}$ arises from a vertex (or possibly two) $\{e_i, a_r, a_s\}$ in exactly one component; each weight-2 vector a_r arises from a vertex $\{e_i, e_j, a_r\}$ of exactly one component. Thus we want to examine traces and weight-2 vectors in components. For a component C, let t(C) denote the set of traces of circuits in C, and let $w_2(C)$ denote the set of weight-2 vectors occurring as elements of vertices of C. Abusing terminology slightly, vectors a_i occurring as elements of vertices (3-circuits) of C will be called vectors of C. Finally, A(C) will denote the set of vectors of C. Obviously the sets of vectors of distinct components are disjoint.

Lemma 3. For any component C, we have $|t(C)| \leq |A(C)|$.

Proof. The traces of C correspond to at least |t(C)| distinct standard basis vectors. Thus at least |t(C)| distinct standard basis vectors are in the span of A(C). Therefore the inequality follows from elementary linear algebra.

Lemma 4. Any component C contains at most two weight-2 vectors. Furthermore if C has two weight-2 vectors a_r and a_s , then either they have identical supports or there is a weight-3 vector a_t such that both $\{a_r, a_t\}$ and $\{a_s, a_t\}$ are traces.

Proof. We first treat the case in which C contains two weight-2 vectors with the same support. For simplicity of notation, assume these vectors are a_1 and a_2 , and that their common support is e_1, e_2 . For any other vector a_u of C, consider all paths which start with a circuit containing either a_1 or a_2 and end at a circuit containing a_u . Out of all such paths we choose one of minimum length. We observe that no interior vertex of such a path is of the form $\{e_i, e_j, a_k\}$. Indeed, if this were the case, then both the predecessor and the successor of $\{e_i, e_j, a_k\}$ would contain a_k by the definition of edges in our graph. Then we could bypass $\{e_i, e_j, a_k\}$ (since its neighbors have a_k in common) and thereby shorten the path. Similarly the first and last vertices of the path are not of the form $\{e_i, e_j, a_k\}$. Therefore we may assume that the shortest path is of the form

$$\{e_3, a_2, a_3\}, \{e_4, a_3, a_4\}, \dots, \{e_{u-1}, a_{u-2}, a_{u-1}\}, \{e_u, a_{u-1}, a_u\}$$

(or $\{e_3, a_1, a_3\}, \{e_4, a_3, a_4\}, \ldots, \{e_{u-1}, a_{u-2}, a_{u-1}\}, \{e_u, a_{u-1}, a_u\}$ if this yields a shorter path) where we have relabeled the elements to simplify notation. Note that the vectors a_1, a_2, \ldots, a_u are distinct since the path has minimum length. Since a_3 is distinct from a_1 and a_2 , it follows that e_3 is distinct from e_1 and e_2 (justifying the relabeling) and so a_3 has weight 3. Since all elements in the support of a_3 can be written in terms of a_1, a_2, a_3 , it follows that $e_4 \notin \{e_1, e_2, e_3\}$, and so a_4 has weight 4. Continuing in this manner, it follows that all vectors of C other than a_1 and a_2 have weights greater than 2. Now assume that C contains at least two weight-2 vectors a_1 and a_s , and that any two weight-2 vectors of C have different supports. Consider a path of minimum length between circuits containing a_1 and a_s , say $\{e_{i_2}, a_1, a_2\}$ and $\{e_{i_s}, a_{s-1}, a_s\}$. Without loss of generality, we assume that a_1 has support a_1 and a_2 has weight 2 and a_2 has a different support, a_1 is distinct from a_1 and a_2 , and so a_2 has weight 3. Looking at successive vertices in the path $\{e_{i_2}, a_1, a_2\}, \ldots, \{e_{i_s}, a_{s-1}, a_s\}$, note that either

(a) the weight of a_k is one greater than that of a_{k-1} , or

(b) the weight of a_k is one less than that of a_{k-1} and either $\{e_1, a_{k-1}, a_k\}$ or $\{e_2, a_{k-1}, a_k\}$, but not both, is a circuit, or

(c) a_{k-1} and a_k share common support and either $\{e_1, a_{k-1}, a_k\}$ or $\{e_2, a_{k-1}, a_k\}$, but not both, is a circuit.

Indeed, let $h \ge 3$ be the least index such that the weight of a_{h-1} is at least as big as the weight of a_h . Then all vectors a_1, \ldots, a_h are distinct due to the minimality of the path, and all vectors $e_1, e_2, e_{i_2}, \ldots, e_{i_{h-1}}$ are distinct since they form the support of a_{h-1} . Vector e_{i_h} must belong to the supports of both a_{h-1} and a_h . It must be distinct from vectors $e_{i_2}, \ldots, e_{i_{h-1}}$, otherwise we obtain linear dependence among distinct vectors a_1, \ldots, a_h . Therefore $e_{i_h} \in \{e_1, e_2\}$. Since condition (b) allows the weight to go down only once as we consider successive a_k 's, a_s can have weight-2 if and only if the path has length 1, say $\{e_3, a_1, a_2\}, \{e_1, a_2, a_3\}$, and the elements are of the form $a_1 = \delta \alpha e_1 + \delta \beta e_2$, $a_2 = \alpha e_1 + \beta e_2 + \gamma e_3$ and $a_3 = \epsilon \beta e_2 + \epsilon \gamma e_3$, where none of the coefficients are zero. From this it is easy to see that there are only two weight-2 vectors in the component C.

We now prove the inequality claimed above for 2-element broken circuits, recast in terms of traces and weight-2 vectors, for each component.

Lemma 5. For any component C with |A(C)| even, we have

$$|t(C)| + |w_2(C)| \le \frac{3|A(C)|}{2},$$

with equality if and only if |A(C)|=2, |t(C)|=1 and $|w_2(C)|=2$. If |A(C)| is odd, then we have

$$|t(C)| + |w_2(C)| \le \frac{3|A(C)| - 1}{2},$$

with equality if and only if either

(a) |A(C)| = 1, |t(C)| = 0 and $|w_2(C)| = 1$, or

(b) |A(C)| = 3, |t(C)| = 2 and $|w_2(C)| = 2$.

Proof. The cases of |A(C)| being either 1 or 2 are obvious, and the case |A(C)| = 3 follows from the ideas in the proof of Lemma 4. For |A(C)| = 4, the bound of

6 follows since $|t(C)| \le |A(C)| = 4$ and $|w_2(C)| \le 2$. Furthermore the ideas in the proof of Lemma 4 show that when |A(C)| = 4, we have that $|w_2(C)| = 2$ implies that $|t(C)| \le 3$. Hence equality never occurs in this case. The case |A(C)| = 5 is similar. All cases with $|A(C)| \ge 6$ follow directly from Lemma 3 and the inequality $|w_2(C)| \le 2$ of Lemma 4.

Applying Lemma 5 to the components of the graph gives us the desired inequality about 2-element broken circuits in $B = \{e_1, \ldots, e_n, a_1, \ldots, a_n\}$ and allows us to describe the cases of equality as follows.

Lemma 6. The maximum number of broken circuits in $B = \{e_1, \ldots, e_n, a_1, \ldots, a_n\}$ is $\lfloor 3n/2 \rfloor$. The cases of equality arise precisely when by permuting the rows and columns of A, a matrix of the form in Theorem 3 can be obtained.

From here on, the differences between the cases of even n and odd n are minimal, and so we shall focus on the even case. We just argued that, by proper permutations of its rows and columns, the matrix A can be brought to a block diagonal form

$$A' = \begin{pmatrix} A_1 & & & & \\ & A_2 & 0 & & \\ & 0 & \ddots & & \\ & & & A_k \end{pmatrix} , \tag{5}$$

where $A_i \in GL_2(q)$ and A_i has no zero entries. Notice that P(A,q) = P(A',q).

Thus our attempt to find all $A \in GL_n(q)$ for which c_1 is the greatest (class \mathcal{F}_1), and then out of all matrices of \mathcal{F}_1 to choose the ones for which c_2 is the least (class \mathcal{F}_2) led to the complete characterization of the matrices. If $A \in \mathcal{F}_2$, then

$$P(A,q) = q^{n} - {2n \choose 1} q^{n-1} + \left[{2n \choose 2} - \frac{3n}{2} \right] q^{n-2} - c_3 q^{n-3} + \dots + (-1)^n c_n.$$

In order to compute P(A,q) we use Lemma 1 (similarly, use both Lemmas 1 and 2 for the odd case).

Let $A \in \mathcal{F}_2$, and we may assume that A has a block diagonal form (5) with $A_i \in GL_2(q)$, and A_i having no zero entries. A vector $x = (x_1, x_2, \dots, x_{n-1}, x_n)$ is a good vector of A if and only if (x_{2i-1}, x_{2i}) a good vector of $A_i, i = 1, \dots, k$ (recall n = 2k). By Lemma 1 there are exactly (q-1)(q-3) choices for (x_{2i-1}, x_{2i}) for each $i = 1, 2, \dots, k$. Hence there are $[(q-1)(q-3)]^k$ good vectors of $A \in \mathcal{F}_2$. Therefore Theorem 3 is proved for all sufficiently large q, i.e. for all $q \geq q_0$, where q_0 is some constant depending on n. An estimate on q_0 can be taken as an upper bound M for the absolute values of the roots of the polynomial $H(q) = P(A,q) - P(A^*,q)$ where $A \in GL_n(q) \setminus \mathcal{F}_2, A^* \in \mathcal{F}_2$. Then for all q > M, we have H(q) > 0. In order to compute M in terms of the coefficients of H(q) we use the following proposition due to Fujiwara [2]; for a reference in English see Wilf [4]:

Lemma 7. All the roots of the polynomial $f(z) = f_0 z^n + f_1 z^{n-1} + \ldots + f_n$ lie in the circle $|z| \le R = 2 \max \left\{ \left| \frac{f_i}{f_0} \right|^{1/i} : 1 \le i \le n \right\}.$

Let $P(A,q) = q^n - c_1 q^{n-1} + c_2 q^{n-2} - \ldots + (-1)^n c_n$ and $P(A^*,q) = q^n - c_1^* q^{n-1} + c_2^* q^{n-2} - \ldots + (-1)^n c_n^*$. Then $H(q) = h_1 q^{n-1} + h_2 q^{n-2} + \ldots + h_n$, where $h_i = (-1)^i (c_i - c_i^*), i = 1, \ldots, n$. The coefficient h_1 is 0 if $A \in \mathcal{F}_1 \backslash \mathcal{F}_2$, and satisfies $1 \le h_1 < \binom{2n}{1}$ if $A \in GL_n(q) \backslash \mathcal{F}_1$. From (3) we have

$$0 \le |h_i| \le \binom{2n}{i}, \text{ for } i = 2, \dots, n.$$
 (6)

If $h_1 \neq 0$, then by Lemma 7, we get

$$R_1 = 2 \max \left\{ \left| \frac{h_{1+i}}{h_1} \right|^{1/i} : 1 \le i \le n - 1 \right\}.$$
 (7)

If $h_1=0$, then $h_2 \ge 1$ (since $A \in \mathcal{F}_1 \setminus \mathcal{F}_2$) and so by Lemma 7, we get

$$R_2 = 2 \max \left\{ \left| \frac{h_{2+i}}{h_2} \right|^{1/i} : 1 \le i \le n - 2 \right\}$$
 (8)

Lemma 8. $R_1 \leq 2 \binom{2n}{2}$, and $R_2 \leq 2 \binom{2n}{3}$.

Proof. Using (6), (7), and (8) we have:

$$R_1 \le 2 \max \left\{ \binom{2n}{1+i}^{1/i} : i = 1, \dots, n-1 \right\} ,$$

and

$$R_2 \le 2 \max \left\{ {2n \choose 2+i}^{1/i} : i = 1, \dots, n-2 \right\}.$$

It is a straightforward verification that both sequences $\binom{2n}{i+1}^{1/i}$, $i=1,\ldots,n-1$, and $\binom{2n}{2+i}^{1/i}$, $i=1,\ldots,n-2$ are decreasing. Hence their first terms are the largest, and this proves the lemma.

Since
$$\max\{R_1,R_2\} = R_2 = 2\binom{2n}{3}$$
 for $n \ge 3$, then $P(A,q) > P(A^*,q)$ for all $q > 2\binom{2n}{3}$ and all $A \in GL_n(q) \setminus \mathcal{F}_2$. This ends the proof of Theorem 3.

Acknowledgment. The authors are grateful to the anonymous referee who suggested the probabilistic proof of Theorem 1 and a slight strengthening of the original statement. The original proof was different and covered the case $q \ge n + 2 \ge 3$ only.

References

- [1] N. Alon, and M. Tarsi: A nowhere zero point in linear mappings, *Combinatorica* 9(4) (1989), 393–395.
- [2] M. FUJIWARA: Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung, Tôhoku Math. J. 10 (1916), 167–171.
- [3] G.-C. Rota: On the Foundations of Combinatorial Theory I: Theory of Möbius Functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340-368, 1964.
- [4] H. S. Wilf: Mathematics for the Physical Sciences (Wiley, New York, 1978).

R. D. Baker

Department of Mathematical Sciences University of Delaware Newark, Delaware 19716, USA baker@math.udel.edu

Felix Lazebnik

Department of Mathematical Sciences University of Delaware Newark, Delaware 19716, USA fellaz@math.udel.edu

J. Bonin

Department of Mathematics The George Washington University Washington, DC 20052, USA jbonin@gwuvm.gwu.edu

E. Shustin

School of Mathematical Sciences Tel Aviv University 69 978 Tel Aviv, Israel shustin@math.tau.ac.il